

Research & Development Information

PCA R&D Serial No. 1961

Forty-Two-Year Test Results for PCA Series 374 on Long-Term Properties of Concrete

by Martha G. VanGeem

5420 Old Orchard Road Skokie, Illinois 60077-1083 847.966.6200 Fax 847.966.9481

www.cement.org

Oak Ridge National Laboratory 1992

Report to

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS for the U.S. DEPARTMENT OF ENERGY Under Contract No. DE-AC05-84OR21400

.

FORTY-TWO-YEAR TEST RESULTS FOR PCA SERIES 374 ON LONG-TERM PROPERTIES OF CONCRETE

by

Martha G. Van Geem, P.E.

Submitted by

CONSTRUCTION TECHNOLOGY LABORATORIES, INC. 5420 Old Orchard Road Skokie, IL 60077

September 1992

Project No. 102323

٤.

FORTY-TWO-YEAR TEST RESULTS FOR PCA SERIES 374 ON LONG-TERM PROPERTIES OF CONCRETE

by

Martha G. Van Geem, P.E.*

INTRODUCTION

Construction Technology Laboratories, Inc. (CTL) has performed testing to determine physical properties of concrete cast in 1950. Work was performed in accordance with P.O. No. 37X-SK412V from the U.S. Department of Energy, Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory. Compressive strength, modulus of rupture, pulse velocity, and unit weight were determined from portions of twenty-two 6 x 6 x 30 in. beams from Portland Cement Association (PCA) Series 374. Petrographic examinations were also performed on seven specimens to determine depth of carbonation, presence of microcracking, alteration of hydration products (chemical shrinkage), and aggregate-paste interactions. Specimens were moist-cured for 42 years at the PCA/CTL facilities in Skokie, Illinois.

Physical properties of concrete from Series 374 at ages 1 day, 7 days, 28 days, 3 months, 1 year, 3 years, 10 years, and 34 years are presented in References 1 and 2.

Oak Ridge National Laboratory has indicated that results presented in this report will be used as input in the Structural Materials Information Center, a materials property data base containing information on the time variation of properties under the influence of pertinent environmental stressors and aging factors.

SPECIMENS

Fifty-five 6 x 6 x 30-in. moist-cured concrete beams cast in 1950 were available for testing. Martin Marietta Energy Systems selected 22 specimens for testing. Table 1 presents the identification number of specimens tested, the cement type, the cement content,

^{*}Senior Engineer, Construction Technology Laboratories, Inc., 5420 Old Orchard Road, Skokie, Illinois, 60077. 708-965-7500.

and water-cement ratio. All specimens were moist-cured in a fog room at the PCA/CTL facilities in Skokie, Illinois for 42 years.

TESTING SEQUENCE

The test sequence was initiated by testing one 18-in. end of the 30-in. beam in flexure. Pulse velocity and unit weight were then measured on the short end which had nominal dimensions of approximately $6 \times 6 \times 8$ in. Cubes were then cut from the two ends of the 30-in. beams for compression tests. A one-inch slice of the beam was cut for petrographic examination and two nominal 4-in. diameter cores were extracted from the remainder of the beam for compression and unit weight tests.

FLEXURAL STRENGTH OF BEAMS

The modulus of rupture of one 18-in. end of each 30-in. beam was determined in accordance with ASTM C78-84, "Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading.)" In earlier tests of specimens from PCA Series 374, two flexural breaks were obtained from each specimen. In this study one break was obtained so that adequate concrete would be available for cores. Specimens were removed from the moist room, placed on a cart, and covered with burlap before flexural testing. Specimens were tested within 30 minutes of removal from moist room. Table 2 presents modulus of rupture test results.

PULSE VELOCITY OF BEAM PORTION

Pulse velocity was measured on the short end of each $6 \times 6 \times 30$ in. beam broken in flexure. These ends had approximate nominal dimensions of $6 \times 6 \times 8$ in. Specimen dimensions varied depending on where the beam broke in flexure. Pulse velocity measurements are presented in Table 3.

UNIT WEIGHT OF BEAM PORTION

Unit weight was also measured on the short end of each $6 \times 6 \times 30$ in. beam broken in flexure. Unit weights were determined from specimen weights in air and water and are presented in Table 4.

COMPRESSIVE STRENGTH USING PORTIONS OF BEAMS BROKEN IN FLEXURE

The original ends of each $6 \times 6 \times 30$ in. beam were sawed to form cubes with nominal dimensions of $6 \times 6 \times 6$ in. Cubes were tested in accordance with ASTM C116-90, "Standard Test Method for Compressive Strength of Concrete Using Portions of Beams Broken in Flexure." In earlier tests of specimens from PCA Series 374, the length of the beam portion was left rough and not sawed to form a 6-in. cube. In this study cubes were sawed so that adequate concrete would be available for cores. Test results are presented in Table 5. Two cubes were tested for each $6 \times 6 \times 30$ in. specimen.

COMPRESSIVE STRENGTH OF CORES

Two cores were drilled from the remainder of the $6 \times 6 \times 30$ in. beam after cubes and petrographic specimens were extracted. Cores had a nominal diameter of 4 in. and a nominal length of 6 in. Unit weights of cores are presented in Table 6. Cores were tested according to ASTM C42-90, "Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete." Because it was anticipated some core strengths would exceed 10,000 psi, all core ends were surface ground to plane conditions rather than capped with capping compound. Test results including specimen dimensions and loading information are presented in Table 7. Results are summarized in Table 8.

PETROGRAPHIC EXAMINATION

Petrographic examinations were performed on portions of seven beams. Specimens were selected on the basis that each represented concrete made from a different type of portland cement. Petrographic slices were sawed from portions of beams after testing in flexure and removing $6 \times 6 \times 6$ in. cubes from ends. Tests were performed in accordance with ASTM C 856-83 (reapproved 1988), "Standard Practice for Petrographic Examination of Hardened Concrete." Results are presented in Appendix A.

SUMMARY

This report presents results of physical tests performed at Construction Technology Laboratories, Inc. (CTL) to determine properties of concrete cast in 1950 and moist-cured for 42 years. Compressive strength, modulus of rupture, pulse velocity, and unit weight were determined from portions of twenty-two $6 \times 6 \times 30$ in. beams from Portland Cement Association (PCA) Series 374. Petrographic examinations were also performed on seven specimens to determine depth of carbonation, presence of microcracking, alteration of hydration products (chemical shrinkage), and aggregate-paste interactions.

- 4 -

PCA Series	ORNL	ASTM C150	Cement	Water/Cement
374 Mix	Material Code	Cement Type	Content,	Ratio
Identification No.*	No.		lbs per cu yd of concrete	
_	0107000	**		0.47
11 T-2B	01CB069		422	0.47
11 T-2C	01CB069	aje aje	422	0.47
19B-1A	01CB093	Ι	566	0.45
19B-1B	01CB093	Ι	566	0.45
19B-2A	01CB094	Ι	423	0.60
19 B-2 B	01CB094	Ι	423	0.60
21-1A	N/A	II	565	0.43
21-1B	N/A	II	565	0.43
21-2A	N/A	II	427	- 0.56
21-2B	N/A	II	427	0.56
21T-1A	01CB099	***	563	0.39
21 T-1B	01CB099	***	563	0.39
21T-2B	01CB100	***	423	0.49
21T-2C	01CB100	***	423	0.49
31-1A	N/A	III	565	0.49
31-1 B	N/A	Ш	565	0.49
31-2A	N/A	III	427	0.60
31-2B	N/A	Ш	427	0.60
43A-3A	01CB124	IV	284	0.78
43A-3C	01CB124	IV	284	0.78
51-1C	N/A	v	565	0.41
51-2 B	N/A	v	423	0.54

TABLE 1 — CEMENT TYPE AND QUANTITY FOR TESTED SPECIMENS FROM PCA SERIES 374

* The first numeral in the cement designation indicates the cement type. A "T" after the first set of numbers indicates flake Vinsol resin was ground with cement clinker. The numbers 1, 2, or 3 to the right of the hyphen indicate the nominal quantity of 94-lb bags

of cement per cu yd of concrete as follows: 1 = 6 bags, 2 = 4-1/2 bags, and 3 = 3 bags.

** Type I cement with flake Vinsol resin ground with cement clinker to produce the cement.

*** Type II cement with flake Vinsol resin ground with cement clinker to produce the cement.

TABLE 2 - ASTM C 78 FLEXURAL STRENGTH OF CONCRETE (USING SIMPLE BEAM WITH
THIRD POINT LOADING) FOR 42 YR OLD SPECIMENS FROM PCA SERIES 374

Specimen		Width,	Average	Depth,	Average	-		Modulus of Rupture,
Identification		inches	Width, inches	inches	Depth, inches	inches	lbs	psi
0.74		(00	menes	<u> </u>	menes		ļ	
374	1	6.08		6.04				
11-T	2	6.06	6.07	6.07	6.06	18	8,900	720
2B	3	6.09		6.08				· · · · · · · · · · · · · · · · · · ·
374	1	6.07		6.08				
11-T	2	6.09	6.07	6.07	6.07	18	9,200	740
2C	3	6.04		6.06				
374	1	6.03		6.07				
19B	2	6.00	6.01	6.06	6.06	18	11,500	940
1A	3	6.01		6.07				
374	1	6.06		6.06		<u> 4</u>		
19B	2	6.04	6.03	6.05	6.05	18	11,500	940
1B	3	6.01		6.06				·
374	1	6.04		6.00				
19B	2	5.98	6.00	6.00	6.00	18	10,500	880
2A	3	6.00		6.01				
374	1	6.05		6.04			1	
19B	2	6.01	6.03	6.10	6.06	18	10,300	840
2B	3	6.03		6.04				

-6-

Construction Technology Laboratories, Inc.

102323 6/8/92

TABLE 2 - ASTM C 78 FLEXURAL STRENGTH OF CONCRETE (USING SIMPLE BEAM WITHTHIRD POINT LOADING) FOR 42 YR OLD SPECIMENS FROM PCA SERIES 374 (CONT.)

Specimen Identification		Width, inches	Average Width, inches	Depth, inches	Average Depth, inches	Span, inches	Maximum Load, lbs	Modulus of Rupture, psi
374	1	6.03	6.05	6.06	6.02	10	12,000	980
21 1A	23	6.07 6.07	6.05	6.02 6.01	6.03	18	12,000	960
374	1	6.05		6.04				
21	2	6.07	6.06	6.04	6.04	18	11,500	940
1B	3	6.05		6.03				
374	1	5.96		6.03				
21	2	5. 9 9	6.00	6.04	6.03	18	11,000	910
2A	3	6.04		6.02				
374	1	6.02		6.05				
21	2	6.06	6.05	6.01	6.03	18	9,800	800
2B	3	6.08		6.02				
374	1	6.07		6.03				
21T	2	6.01	6.05	6.05	6.04	18	10,600	860
1A	3	6.07		6.05				
374	1	6.04		5.98		_		
21T	2	6.04	6.05	5.97	5.97	18	' 11,800	99 0
1B	3	6.07		5.97				
374	1	6.06		6.07				
21T	2	6.06	6.05	6.06	6.06	18	10,000	810
2B	3	6.02		6.06				
374	1	6.08		6.07				0.50
21T	2	6.10	6.08	6.06	6.06	18	10,500	850
2C	3	6.06		6.05				

-7-

TABLE 2 - ASTM C 78 FLEXURAL STRENGTH OF CONCRETE (USING SIMPLE BEAM WITHTHIRD POINT LOADING) FOR 42 YR OLD SPECIMENS FROM PCA SERIES 374 (CONT.)

Specimen Identification		Width, inches	Average Width, inches	Depth, inches	Average Depth, inches	Span, inches	Maximum Load, lbs	Modulus of Rupture, psi
374 31	1 2	6.05 6.05	6.04	6.03 6.06	6.06	18	12,000	970
1A 374	3	6.01 6.03		6.09 6.10			l	
31 1B	23	6.05 6.05	6.04	6.12 6.10	6.11	18	10,500	840
374 31 2A	1 2 3	6.00 5.99 6.00	5.99	6.06 6.06 6.03	6.05	18	9,600	790
374 31 2B	1 2 3	6.01 6.01 6.00	6.01	6.10 6.09 6.08	6.09	18	11,000	890
374 43A 3A	1 2 3	6.03 6.04 6.02	6.03	6.09 6.07 6.06	6.07	18	8,800	710
374 43A 3C	1 2 3	6.05 6.04 6.04	6.04	6.10 6.04 6.00	6.04	18	' 9,500	770
374 51 1C	1 2 3	6.05 6.07 6.07	6.06	6.04 6.10 6.02	6.05	18	12,500	1010
374 51 2B	1 2 3	6.08 6.07 6.08	6.07	6.01 6.02 6.05	6.03	18	9,800	800

Construction Technology Laboratories, Inc.

102323 (v8/92

椧

TABLE 3 - PULSE VELOCITY TEST RESULTSFOR 42 YR OLD CONCRETE SPECIMENS FROM PCA SERIES 374

Specimen Identification	Pulse Velocity Reading 1	Pulse Velocity Reading 2	Average Pulse Velocity Reading	Length, in.	Pulse Velocity, ft/sec
11 T-2B	42.2	41.3	41.8	8.00	15,970
11T-2C	40.4	39.5	40.0	7.88	16,440
19 B-1A	38.4	37.5	38.0	8.00	17,570
19B-1B	39.9	40.0	40.0	8.00	16,690
19B-2A	40.2	39.2	39.7	8.00	16,790
19B-2B	38.7	39.3	39.0	7.88	16,840
21-1A	37.3	37.9	37.6	7.88	17,460
21-1B	40.0	39.1	39.6	8.13	17,130
21-2A	39.6	39.3	39.5	8.00	16,900
21-2B	40.0	40.0	40.0	8.00	16,670
21T-1A	38.1	38.5	38.3	8.00	17,410
21T-1B	37.5	37.9	37.7	8.00	17,680
21T-2B	39.7	39.5	39.6	7.88	16,580
21T-2C	39.2	40.9	40.1	8.00	16,650
31-1A	40.7	39.3	40.0	, 7.88	16,420
31-1B	39.2	40.2	39.7	7.88	16,540
31-2A	39.5	39.0	39.3	7.75	16,450
31-2B	41.3	39.0	40.2	8.00	16,600
43A-3A	41.3	40.6	41.0	7.88	16,040
43A-3C	42.0	40.6	41.3	8.00	16,140
51-1C	37.0	36.4	36.7	7.88	17,890
51-2B	39.2	38.1	38.7	8.00	17,250

-9-

Construction Technology Laboratories, Inc.

.

TABLE 4 - UNIT WEIGHT OF CONCRETE ENDS BROKENIN FLEXURE FOR 42 YR OLD CONCRETE SPECIMENSFROM PCA SERIES 374

Specimen	Weight	Weight	Unit Weight,
Identification	in Air, lbs	in Water, lbs	lbs per cu ft
11T-2B	25.13	14.67	149.9
11T-2C	25.05	14.68	150.7
19B-1A	25.80	15.41	154.9
19B-1B	25.95	15.50	155.0
19B-2A	25.53	15.22	154.5
19B-2B	24.97	14.86	154.1
21-1A	25.46	15.26	155.8
21-1B	26.11	15.65	155.8
21-2A	25.29	15.09	154.7
21-2B	25.80	15.40	154.8
21T-1A	25.59	15.22	154.0
21T-1B	25.46	15.20	154.8
21T-2B	25.46	15.06	152.8
21T-2C	25.35	15.00	152.8
31-1A	25.11	14.91	153.6
31-1B	25.36	15.05	153.5
31-2A	25.00	14.85	153.7
31-2B	25.58	15.17	153.3
43A-3A	24.51	14.31	149.9
43A-3C	25.20	14.74	150.3
51-1C	25.50	15.32	156.3
51-2B	25.38	15.15	154.8

102323 6/10/92

TABLE 5 - ASTM C 116 COMPRESSIVE STRENGTH OF CONCRETE USING PORTIONS OFBEAMS BROKEN IN FLEXURAL FOR 42 YR OLD SPECIMENS FROM PCA SERIES 374

Specimen		Width,	Average	Depth,	Average	Maximum Load,	Compressive	Average Compressive
Identification		in.	Width,	in.	Depth,	lbs	Strength,	Compressive Strength
			in.		in.		psi	of Two Ends, psi
	1	6.10		6.18				
11 T-2B	2	6.10	6.10	6.19	6.18	245,000	6,500	
	1	6.08	6.00	6.23	6.00	046.000	6 500	6 500
11T-2B	2	6.09 6.06	6.09	<u>6.22</u> 6.24	6.22	246,000	6,500	6,500
11 T-2C	2	6.08	6.07	6.24	6.23	252,000	6,670	
	1	6.08	0.07	6.19	0.25	2,000	0,070	
11T-2C	2	6.07	6.08	6.20	6.19	248,000	6,590	6,630
	1	6.08		6.26				
19 B-1A	2	6.05	6.07	6.24	6.25	370,000	9,760	
	1	6.04		6.21				
19B-1A	2	6.01	6.02	6.22	6.21	366,000	9,780	9,770
100 10		6.08		6.25		175.000	0.070	
19 B-1B	2	6.04	6.06	6.20	6.22	375,000	9,950	
19B-1B	12	6.01 6.00	6.00	6.20 6.21	6.20	250.000	0.400	0.690
178-18	$\frac{2}{1}$	6.00	0.00	6.21	0.20	350,000	_9,400	9,680
19 B -2 A	2	6.01	6.01	6.19	6.20	265,000	7,120	
	1	6.00	0.01	6.17	0.20	200,000	7,120	
19B-2A	2	6.09	6.05	6.18	6.17	286,000	7,670	7,400
	1	6.03		6.20				
19B-2B	2	5.98	6.00	6.26	6.23	267,000	7,150	
	1	6.07		6.22				
19B-2B	2	6.05	6.06	6.19	6.20	279,000	7,430	7,290
21-1A	1 2	6.04 5.99	6.01	6.20 6.20	6.00	242,000	. 100	
21-1A	1	6.08	6.01	6.20	6.20	342,000	9,180	
21-1A	2	6.03	6.05	6.22	6.21	370,000	9,850	9,520
	$\frac{1}{1}$	5.84	0.05	6.22	0.2.1	570,000	2,000	
21-1B	2	6.03	5.93	6.20	6.21	398,000	10,810	
	1	6.01		6.19				
21-1B	2	6.03	6.02	6.18	6.18	398,000	10,700	10,760
	1	6.04		6.22				
<u>21-2A</u>	2	6.04	6.04	6.28	6.25	310,000	8,220	
21-2A	1 2	6.04 6.04	6.04	6.15 6.19	617	200.000	0.050	0 1 4 0
A1-2A	1	6.04	0.04	6.19	6.17	300,000	8,050	8,140
21-2B	2	6.03	6.02	6.20	6.24	300,000	7,990	
	1	6.10		6.16				
21-2B	2	6.08	6.09	6.20	6.18	314,000	8,350	8,170
	1	6.05		6.20				
21T-1A	2	6.03	6.04	6.18	6.19	374,000	10,010	
	1	6.05	_	6.16				
21T-1A	2	6.07	6.06	6.16	6.16	373,000	10,000	10,010

102323 6/10/92

TABLE 5 - ASTM C 116 COMPRESSIVE STRENGTH OF CONCRETE USING PORTIONS OF BEAMS BROKEN IN FLEXURAL FOR 42 YR OLD SPECIMENS FROM PCA SERIES 374 (CONT.)

Specimen		Width,	Average	Depth,	Average	Maximum Load,	Compressive	Average Compressive
Identification		in.	Width,	in.	Depth,	lbs	Strength,	Compressive Strength
			in.		in.		psi	of Two Ends, psi
	1	6.08		6.16				
21T-1B	2	6.04	6.06	6.14	6.15	368,000	9,880	
21 T- 1B	1 2	6.09 6.06	6.07	<u>6.18</u> 6.15	6.17	202.000	10.490	10,180
211-10	$\frac{2}{1}$	6.08	4.07	6.17	0.17	392,000	10,480	10,160
21T-2B	2	6.09	6.08	6.19	6.18	290,000	7,710	
	1	6.05		6.19			.,,	-
21 T-2B	2	6.05	6.05	6.20	6.19	291,000	7,770	7,740
	1	6.07		6.20				
21 T-2C	2	6.09	6.08	6.22	6.21	296,000	7,850	
017 00		6.10	6.10	6.19	6 10	1 00 000		7 000
21 T-2 C	2 1	6.10 6.06	6.10	6.19	6.19	298,000	7,900	7,880
31-1A	2	6.08	6.07	6.18 6.17	6.17	330,000	8,810	
<u>J1-171</u>	1	6.11	0.07	6.20	0.17	330,000	0,010	
31-1A	2	6.04	6.07	6.20	6.20	336,000	8,920	8,870
	1	6.10		6.21				0,070
31-1B	2	6.10	6.10	6.21	6.21	322,000	8,500	
	1	6.10		6.23				
31-1B	2	6.15	6.12	6.21	6.22	328,000	8,610	8,560
	1	6.06		6.23				
31-2A	2	6.06	6.06	6.19	6.21	271,000	7,210	
21.24		6.09	607	6.17	1 . 17	070.000	7 000	5.050
<u>31-2A</u>	2	6.06 6.10	6.07	6.18 6.26	6.17	273,000	7,280	7,250
31-2B	2	6.09	6.09	6.19	6.22	276,000	7,290	
	$\frac{2}{1}$	6.12	0.07	6.18	0.22	270,000	7,290	
31-2B	2	6.09	6.10	6.21	6.20	256,000	6,770	7,030
	1	6.08		6.22				
43A-3A	2	6.07	6.07	6.20	6.21	182,000	4,830	
	1	6.04		6.21	_			
43A-3A	2	6.10	6.07	6.22	6.21	188,000	4,990	4,910
424.20	1	6.08	6.00	6.21	6.00	101.000	r 000	
43A-3C	2	6.05 6.03	6.06	6.19 6.19	6.20	191,000	5,090	
43A-3C	2	6.05	6.04	6.19	6.19	179.000	4,790	4,940
	1	6.04		6.22	<u> </u>			,,740
51-1C	2	6.09	6.06	6.20	6.21	415,000	11,030	
	1	6.04		6.22				1
51-1C	2	6.09	6.06	6.20	6.21	415,000	11,030	11,030
	1	6.04	l	6.24	1			
51-2B	2	6.08	6.06	6.21	6.22	296,000	7,860	Į
61 0 D	1	6.01	600	6.21		000.000	7 000	T 000
<u>51-2B</u>	2	6.04	6.02	6.24	6.23	296,000	7,900	7,880

102323 6/10/92

TABLE 6 - UNIT WEIGHT OF CONCRETE CORES FOR42 YR OLD CONCRETE SPECIMENS FROM PCASERIES 374

Specimen Identification	Weight in Air, lbs	Weight in Water, lbs	Unit Weight, lbs per cu ft	Average Unit Weight, lbs per cu ft
11 T-2B	6.35	3.71	150.1	`
11 T-2B	6.47	3.78	150.1	150.1
11 T-2 C	6.39	3.73	149.9	
11T-2C	6.39	3.74	150.3	150.1
19B-1A	6.75	4.05	156.0	T T
19B-1A	6.52	3.92	156.5	156.2
19B-1B	6.53	3.91	155.5	
19 B- 1B	6.51	3.89	155.0	155.3
19B-2A	5.56	3.30	153.5	
19B-2A	6.48	3.85	153.7	153.6
19B-2B	6.50	3.85	153.1	
19B-2B	6.50	3.87	154.2	153.7
21-1A	6.55	3.93	156.0	
21-1A	6.52	3.89	154.7	155.3
21-1B	6.72	4.03	155.9	
21-1B	6.59	3.96	156.4	156.1
21-2A	6.58	3.93	154. 9	
21-2A	N/A	N/A	N/A	154.9
21-2B	6.67	3.99	155.3	
21-2B	6.50	3.89	155.4	155.4
21T-1A	6.52	3.89	154.7	
21 T-1A	6.53	3.90	154.9	154.8
21T-1B	6.66	3.96	153.9	
21T-1B	6.50	3.87	154.2	154.1

102323 9/2/92

TABLE 6 - UNIT WEIGHT OF CONCRETE CORES FOR
42 YR OLD CONCRETE SPECIMENS FROM PCA
SERIES 374 (CONT.)

Specimen Identification	Weight in Air, lbs	Weight in Water, lbs	Unit Weight, lbs per cu ft	Average Unit Weight, lbs per cu ft
21 T-2B	6.62	3.92	153.0	
21T-2B	6.55	3.87	152.5	152.8
21T-2C	6.50	3.84	152.5	
21T-2C	6.62	3.91	152.4	152.5
31-1A	6.51	3.87	153.9	
31-1A	6.50	3.86	153.6	153.8
31-1B	6.51	3.86	153.3	
31-1B	6.54	3.87	152.8	153.1
31-2A	6.54	3.90	154.6	
31-2A	6.62	3.94	154.1	154.4
31-2 B	5.68	3.35	152.1	
31-2B	6.55	3.89	153.7	152.9
43A-3A	6.30	3.67	149.5	
43A-3A	6.44	3.75	149.4	149.4
43A-3C	6.33	3.71	150.8	
43A-3C	6.49	3.80	150.5	150.7
51-1C	6.60	3.97	156.6	
51-1C	6.60	3.98	157.2	156.9
51-2B	6.53	3.91	155.5	
51-2B	6.52	3.89	154.7	155.1

102323 9/2/92

1

i.

Construction Technology Laboratories, Inc.

-14-

11 T-2B	11T-2B	11T-2C	11 T-2C
1	1	1 1/4	1
42	42	42	42
Moist	Moist	Moist	Moist
Vertical	Vertical	Vertical	• Vertical
4.02	4.01	3.99	4.02
4.02	4.02	3.91	4.02
4.02	4.02	3.95	4.02
12.67	12.66	12.25	12.69
5.8	5.9	5.9	5.8
35	35	35	35
86,250	85,250	87,000	92,000
6,810	6,730	7,100	7,250
1.45	1.47	1.50	1.45
0.953	0.956	0.960	0.954
6,490	6,440	6,810	6,920
conical	conical	conical	conical
	Moist Vertical 4.02 4.02 4.02 12.67 5.8 35 86,250 6,810 1.45 0.953 6,490	Moist Moist Vertical Vertical 4.02 4.01 4.02 4.02 4.02 4.02 4.02 4.02 12.67 12.66 5.8 5.9 35 35 86,250 85,250 6,810 6,730 1.45 1.47 0.953 0.956 6,490 6,440	42 42 42 42 MoistMoistMoistMoistVerticalVerticalVertical 4.02 4.01 3.99 4.02 4.02 3.91 4.02 4.02 3.95 12.67 12.66 12.25 5.8 5.9 5.9 35 35 35 $86,250$ $85,250$ $87,000$ $6,810$ $6,730$ $7,100$ 1.45 1.47 1.50 0.953 0.956 0.960 $6,490$ $6,440$ $6,810$

Core Identification	19B-1A	19B-1A	19B-1B	19B-1B
Maximum Nominal Aggregate Size, in	1	1	1	1
Concrete Age at Test, approximate years	42	42	42	42
Moisture Condition at Test	Moist	Moist	Moist	Moist
Orientation of Core Axis in Structure	Vertical	Vertical	Vertical	' Vertical
Diameter 1, in	4.02	4.00	3.99	3.99
Diameter 2, in	4.01	4.00	3.99	3.99
Average Diameter, in	4.01	4.00	3.99	3.99
Cross-Sectional Area, sq in	12.65	12.54	12.52	12.51
Length Ground, in	5.9	5.8	5.8	5.7
Loading Rate, psi/sec	35	35	35	35
Maximum Load, Ibs	138,500	144,750	138,000	138,500
Uncorrected Compressive Strength, psi	10,950	11,540	11,030	11,070
Ratio of Capped Length to Diameter, L/D	1.48	1.46	1.46	1.44
Correction Factor - ASTM C 42	0.958	0.955	0.955	0.953
Corrected Compressive Strength, psi	10,490	11,020	10,530	10,550
Fracture Pattern		•		
	conical	conical	conical	conical
Notes:				

102323 6/23/92

Core Identification	19B-2A	19B-2A	19B-2B	19B-2B
Maximum Nominal Aggregate Size (in)	1	1	1	3/4
Concrete Age at Test (approximate years)	42	42	42	42
Moisture Condition at Test	Moist	Moist	Moist	Moist
Orientation of Core Axis in Structure	Vertical	Vertical	Vertical	Vertical
Diameter 1 (in)	3.73	4.00	4.00	3.99
Diameter 2 (in)	3.73	4.00	3.99	4.00
Average Diameter (in)	3.73	4.00	4.00	3.99
Cross-Sectional Area (sq in)	10.91	12.54	12.53	12.53
Length Ground (in)	5.7	5.9	5.9	5.9
Loading Rate (psi/s)	35	35	35	35
Maximum Load (lbs)	82,500	87,500	96,500	93,500
Uncorrected Compressive Strength (psi)	7,560	6,980	7,700	7,460
Ratio of Capped Length to Diameter (L/D)	1.54	1.47	1.47	1.47
Correction Factor (ASTM C42)	0.963	0.956	0.957	0.956
Corrected Compressive Strength (psi)	7,280	6,670	7,370	7,130
Fracture Pattern		I		
	conical	conical	conical	conical

102323 6/23/92

21-1B	21-1B
1 1/4	1 1/8
42	42
Moist	Moist
Vertical	' Vertical
4.01	3.99
4.02	3.99
4.02	3.99
12.67	12.50
5.9	5.9
35	35
151,250	141,500
11,930	11,320
1.47	1.47
0.956	0.956
11,410	10,830
conical	conical

102323 6/23/92

.

Core Identification	21-2A	21-2A	21-2B	21-2B
Maximum Nominal Aggregate Size (in)	1 1/8	1	1	1 1/8
Concrete Age at Test (approximate years)	42	42	42	42
Moisture Condition at Test	Moist	Moist	Moist	Moist
Orientation of Core Axis in Structure	Vertical	Vertical	Vertical	' Vertical
Diameter 1 (in)	4.02	2.76	4.02	4.00
Diameter 2 (in)	4.02	2.76	4.01	4.00
Average Diameter (in)	4.02	2.76	4.01	4.00
Cross-Sectional Area (sq in)	12.67	6.00	12.65	12.54
Length Ground (in)	5.8	5.5	5.9	5.8
Loading Rate (psi/s)	35	35	35	35
Maximum Load (lbs)	113,750	46,500	103,000	105,000
Uncorrected Compressive Strength (psi)	8,980	7,750	8,140	8,370
Ratio of Capped Length to Diameter (L/D)	1.45	2.00	1.47	1.46
Correction Factor (ASTM C42)	0.954	1.000	0.956	0.955
Corrected Compressive Strength (psi)	8,570	7,750	7,780	7,990
Fracture Pattern		1		
	conical	conical	conical	conical
Notes:				

Construction Technology Laboratories, Inc.

102323 6/23/92

Core Identification	21T-1A	21T-1A	21T-1B	21T-1B
Maximum Nominal Aggregate Size (in)	1	1	1	1
Concrete Age at Test (approximate years)	42	42	42	42
Moisture Condition at Test	Moist	Moist	Moist	Moist
Orientation of Core Axis in Structure	Vertical	Vertical	Vertical	' Vertical
Diameter 1 (in)	3.99	3.99	4.02	4.00
Diameter 2 (in)	4.00	3.99	4.01	4.00
Average Diameter (in)	3.99	3.99	4.02	4.00
Cross-Sectional Area (sq in)	12.53	12.49	12.67	12.54
Length Ground (in)	6.0	5.9	5.9	5.9
Loading Rate (psi/s)	35	35	35	35
Maximum Load (lbs)	128,000	134,000	145,250	134,750
Uncorrected Compressive Strength (psi)	10,220	10,720	11,470	10,740
Ratio of Capped Length to Diameter (L/D)	1.50	1.48	1.48	1.47
Correction Factor (ASTM C42)	0.960	0.957	0.957	0.957
Corrected Compressive Strength (psi)	9,810	10,270	10,980	10,280
Fracture Pattern)		

Core Identification	21T-2B	21T-2B	21T-2C	21 T -2 C
Maximum Nominal Aggregate Size (in)	1	1 1/4	1	1
Concrete Age at Test (approximate years)	42	42	42	42
Moisture Condition at Test	Moist	Moist	Moist	Moist
Orientation of Core Axis in Structure	Vertical	Vertical	Vertical	' Vertical
Diameter 1 (in)	4.02	4.02	4.02	3.99
Diameter 2 (in)	4.01	4.01	4.02	3.99
Average Diameter (in)	4.01	4.01	4.02	3.99
Cross-Sectional Area (sq in)	12.66	12.65	12.66	12.50
Length Ground (in)	5.9	5.9	5.9	5.9
Loading Rate (psi/s)	35	35	35	35
Maximum Load (lbs)	106,000	104,500	103,000	102,500
Uncorrected Compressive Strength (psi)	8,370	8,260	8,130	8,200
Ratio of Capped Length to Diameter (L/D)	1.47	1.48	1.48	1.48
Correction Factor (ASTM C42)	0.956	0.957	0.957	0.958
Corrected Compressive Strength (psi)	8,010	7,910	7,790	7,860
Fracture Pattern		•		
	conical	conical	conical	conical
Notes:			I	

102323 6/23/92

1 1/8 42 Moist Vertical 4.00 4.00 12.55 5.9 35 107,000	1 42 Moist Vertical 4.01 4.00 4.01 12.61 5.9 35	1 42 Moist Vertical 3.99 3.99 3.99 12.51 5.9 35
Moist Vertical 4.00 4.00 12.55 5.9 35	Moist Vertical 4.01 4.00 4.01 12.61 5.9	Moist Vertical 3.99 3.99 3.99 12.51 5.9
Vertical 4.00 4.00 4.00 12.55 5.9 35	Vertical 4.01 4.00 4.01 12.61 5.9	[•] Vertical 3.99 3.99 3.99 12.51 5.9
4.00 4.00 4.00 12.55 5.9 35	4.01 4.00 4.01 12.61 5.9	3.99 3.99 3.99 12.51 5.9
4.00 4.00 12.55 5.9 35	4.00 4.01 12.61 5.9	3.99 3.99 12.51 5.9
4.00 12.55 5.9 35	4.01 12.61 5.9	3.99 12.51 5.9
12.55 5.9 35	12.61 5.9	12.51 5.9
5.9 35	5.9	5.9
35		
	35	35
107.000		
107,000	122,000	113,000
8,530	9,670	9,030
1.48	1.47	1.47
0.957	0.956	0.957
8,160	9,250	8,640
1		
conical	conical	conical
	1.48 0.957 8,160	1.48 1.47 0.957 0.956 8,160 9,250

102323 6/23/92

31-2A	31-2A	31-2B	31-2B
1	1	1	1
42	42	42	42
Moist	Moist	Moist	Moist
Vertical	Vertical	Vertical	' Vertical
4.02	4.00	3.99	3.73
4.01	4.00	4.00	3.73
4.02	4.00	3.99	3.73
12.66	12.55	12.53	10.92
5.9	5.9	5.9	5.9
35	35	35	35
91,250	86,000	82,750	81,000
7,210	6,850	6,600	7,420
1.47	1.48	1.48	1.59
0.956	0.958	0.957	0.967
6,890	6,560	6,320	7,170
	1		
conical	conical	conical	conical
	1 42 Moist Vertical 4.02 4.01 4.02 12.66 5.9 35 91,250 7,210 1.47 0.956 6,890	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

102323 6/23/92

Core Identification	43A-3A	43A-3A	43A-3C	43A-3C
Maximum Nominal Aggregate Size (in)	1	1	1	1
Concrete Age at Test (approximate years)	42	42	42	42
Moisture Condition at Test	Moist	Moist	Moist	Moist
Orientation of Core Axis in Structure	Vertical	Vertical	Vertical	' Vertical
Diameter 1 (in)	3.99	3.99	4.01	3.99
Diameter 2 (in)	4.01	3.99	4.01	4.00
Average Diameter (in)	4.00	3.99	4.01	3.99
Cross-Sectional Area (sq in)	12.58	12.51	12.65	12.53
Length Ground (in)	5.9	5.9	5.9	5.9
Loading Rate (psi/s)	35	35	35	35
Maximum Load (lbs)	59,750	62,500	59,000	59,000
Uncorrected Compressive Strength (psi)	4,750	4,990	4,660	4,710
Ratio of Capped Length to Diameter (L/D)	1.48	1.47	1.48	1.47
Correction Factor (ASTM C42)	0.958	0.956	0.958	0.956
Corrected Compressive Strength (psi)	4,550	4,780	4,460	4,500
Fracture Pattern	conical	, conical	conical	conical

102323 6/23/92

Core Identification	51-1C	51-1C	51-2B	51-2B
Maximum Nominal Aggregate Size (in)	1	1	1	1
Concrete Age at Test (approximate years)	42	42	42	42
Moisture Condition at Test	Moist	Moist	Moist	Moist
Orientation of Core Axis in Structure	Vertical	Vertical	Vertical	Vertical
Diameter 1 (in)	3.99	3.99	3.99	3.99
Diameter 2 (in)	3.99	3.99	3.99	3.99
Average Diameter (in)	3.99	3.99	3.99	3.99
Cross-Sectional Area (sq in)	12.51	12.52	12.51	12.51
Length Ground (in)	5.9	5.9	5.8	5.9
Loading Rate (psi/s)	35	35	35	35
Maximum Load (lbs)	140,750	141,500	100,000	102,250
Uncorrected Compressive Strength (psi)	11,250	11,310	7,990	8,180
Ratio of Capped Length to Diameter (L/D)	1.47	1.47	1.46	1.47
Correction Factor (ASTM C42)	0.956	0.957	0.956	0.956
Corrected Compressive Strength (psi)	10,760	10,810	7,640	7,820
Fracture Pattern				
	conical	conical	conical	conical

TABLE 8 - SUMMARY OF ASTM C42-90 TEST RESULTS FOR COMPRESSIVE STRENGTH OF CONCRETE CORES FOR 42 YR OLD SPECIMENS FROM PCA SERIES 374

Beam			
Identification		pressive Strengt	h, psi
No.	Core No. 1	Core No. 2	Average
11 T-2B	6,490	6,440	6,470
11T-2C	6,810	6,920	6,870
19B-1A	10,490	11,020	10,760
19B-1B	10,530	10,550	10,540
19B-2A	7,280	6,670	6,980
19B-2B	7,370	7,130	7,250
21-1A	11,470	11,400	11,440
21-1B	11,410	10,830	11,120
21-2A	8,570	7,750	8,160
21-2B	7,780	7,990	7,890
21T-1A	9,810	10,270	10,040
21T-1B	10,980	10,280	10,630
21T-2B	8,010	7,910	7,960
21T-2C	7,790	7,860	7,830
31-1A	8,610	8,160	8,390
31-1B	9,250	8,640	8,950
31-2A	6,890	6,560	6,730
31-2B	6,320	7,170	6,750
43A-3A	4,550	4,780	4,670
43A-3C	4,460	4,500	4,480
51-1C	10,760	10,810	10,790
51-2B	7,640	7,820	7,730

ſ

REFERENCES

- (1.) Van Geem, M. G. and Naus, D. J., "Summary of Test Results for Portland Cement Association Study on Long-Term Properties of Concrete.", Report No. ORNL/NRC/LTR-91/26, Oak Ridge National Laboratory for the U.S. Department of Energy, Oak Ridge, 1992.
- (2.) Wood, Sharon, "Evaluation of the Long-Term Properties of Concrete," ACI Materials Journal, American Concrete Institute, Detroit, Vol. 88, No. 6, November-December 1991, 14 pages.

APPENDIX A: RESULTS OF PETROGRAPHIC EXAMINATION

-

5420 Old Orchard Road, Skokie, Illinois 60077-1030 Phone: 708/965-7500 Fax: 708/965-6541

PETROGRAPHIC SERVICES REPORT

CTL Project No.: 102323

Date: August 20, 1992

Re: Petrographic Examination of Seven Concrete Slices from 6 x 6 x 30-in. Specimens, Martin Marietta Energy Systems

Seven concrete slices, (See Figures 1, 3, 5, 7, 9, 11 & 13), were received on June 10, 1992 from Ms. Martha G. Van Geem, Senior Engineer of CTL on behalf of Oak Ridge National Laboratory, Martin Marietta Energy Systems of Oak Ridge, Tennessee.

Reportedly, the concrete slices were taken from $6 \ge 6 \ge 30$ -in. specimens that were cast in 1950 (42 years old) as part of PCA Series 374. The concrete slices list is as follows:

SERIES	MIX ID	MIX DESCRIPTION
374	19 B- 1A	TYPE I CEMENT
374	21-1A	TYPE II CEMENT
374	31-1A	TYPE III CEMENT
374	43A-3C	TYPE IV CEMENT
374	51-2B	TYPE V CEMENT
374	11 T-2B	AIR-ENTRAINING CEMENT
374	21T-2A	AIR-ENTRAINING CEMENT

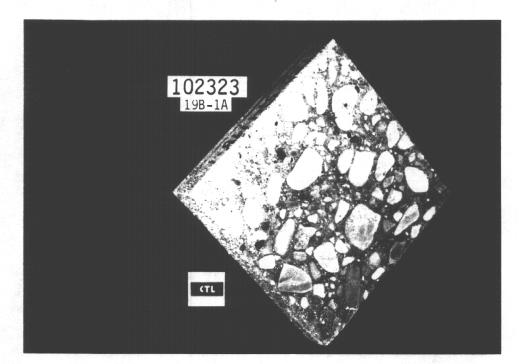
Ms. Van Geem requested full petrographic examination on each concrete slice to evaluate overall quality of concrete.

FINDINGS

1. The concrete mix was produced using 1-in. to 3/4-in.-size gravel composed mainly of siliceous and calcareous rocks. Fine aggregate is of natural sand. Aggregate is evenly graded and uniformly distributed.

- 2. The paste microstructural characteristics and other, important features of the seven concrete slices are summarized in Table No. 1. Highlights of these characteristics and features are as follows:
 - a. The majority of the concrete slices exhibit moderate (0.45 to 0.55) water-to-cement ratio, based on paste properties, except Slice No. 43A-3C which has a moderately high (0.55 to 0.65) and 31-1A is 0.50 to 0.60 water-to-cement ratio.
 - b. The majority of the concrete slices are not air-entrained except Slice Nos. 11T-2B and 21T-2A.
 - c. All of the concrete slices exhibit carbonation confined to 0.1 in. to 0.2 in. depth from the top surface.
 - d. Carbonate dust was observed in the paste but is not detrimental.
- 3. Concrete appears dense and well-consolidated. No significant cracks (macro and micro), joints or large voids were observed in the concrete samples.
- 4. No evidence of alkali-silica reaction, such as gel, reaction rims, and/or cracks from aggregate particles, was observed in the concrete samples.
- 5. Additional details of the petrographic examinations are presented in the attached form.

METHODS OF TEST


Petrographic examination of the concrete slice samples was performed in accordance with ASTM C 856-83 (reapproved 1988), "Standard Practice for Petrographic Examination of Hardened Concrete." Each concrete slice sample was lapped on one side and examined at stereomicroscope magnifications up to 45X. For thin section examination, a rectangular block was cut near the top surface of the sample, placed on a glass microscope slide with epoxy resin, and reduced to a thickness of approximately 20 micrometers (0.0008 in.). The thin section was examined using a polarized-light microscope at magnifications up to 250X to determine aggregate and paste mineralogy and microstructure.

Arturo G. Nispero Senior Petrographer Supervisor, Petrographic Services

AGN/nem

Attachment

102323

CT

FIG. 1 OBLIQUE VIEW OF CONCRETE SLICE NO. 19B-1A, AS RECEIVED FOR TESTING.



FIG. 2 LAPPED SLICE SIDE OF CONCRETE SPECIMEN NO. 19B-1A.

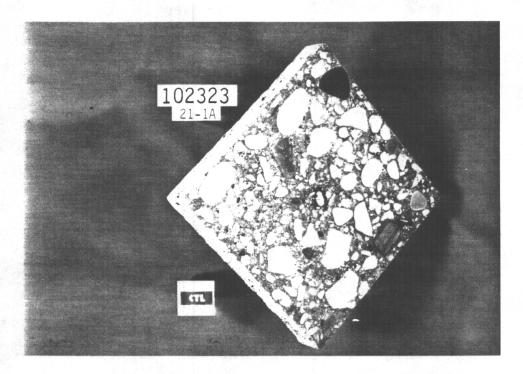
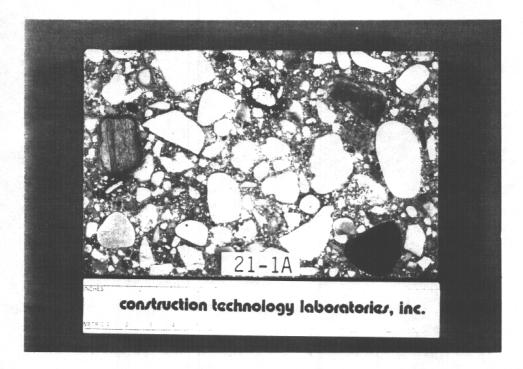
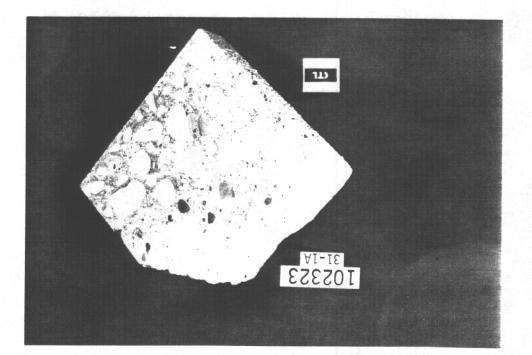


FIG. 3 OBLIQUE VIEW OF CONCRETE SLICE NO. 21-1A, AS RECEIVED FOR TESTING.

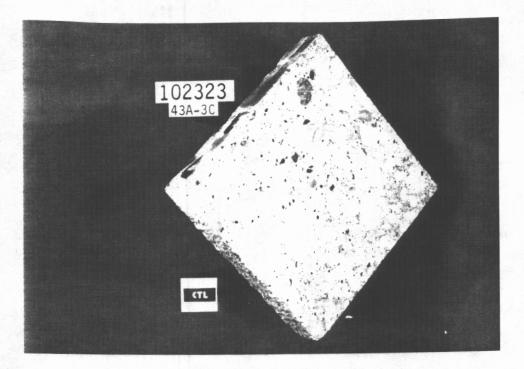

FIG. 4 LAPPED SLICE SIDE OF CONCRETE SPECIMEN NO. 21-1A.

FIG. 6 LAPPED SLICE SIDE OF CONCRETE SPECIMEN NO. 31-1A.

FIG. 5 OBLIQUE VIEW OF CONCRETE SLICE NO. 31-1A, AS RECEIVED FOR TESTING.

CTL

FIG. 7 OBLIQUE VIEW OF CONCRETE SLICE NO. 43A-3C, AS RECEIVED FOR TESTING.

FIG. 8 LAPPED SLICE SIDE OF CONCRETE SPECIMEN NO. 43A-3C.

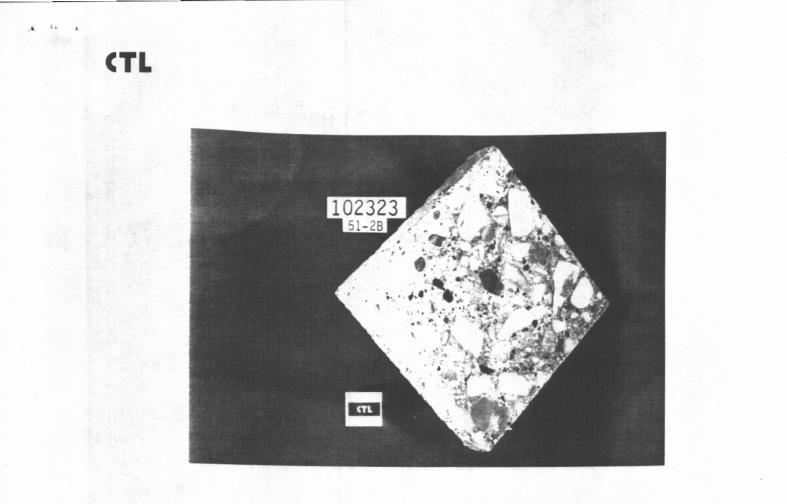
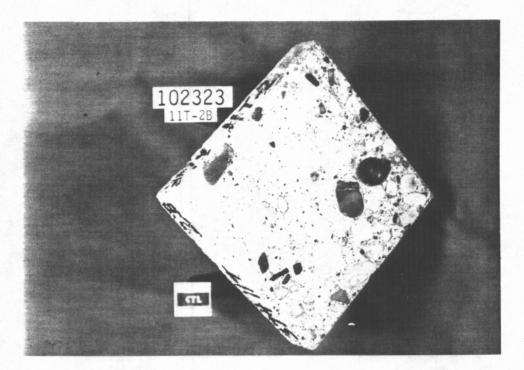



FIG. 9 OBLIQUE VIEW OF CONCRETE SLICE NO. 51-2B, AS RECEIVED FOR TESTING.

FIG. 10 LAPPED SLICE SIDE OF CONCRETE SPECIMEN NO. 51-2B.



CTL

FIG. 11 OBLIQUE VIEW OF CONCRETE SLICE NO. 11T-2B, AS RECEIVED FOR TESTING.

FIG. 12 LAPPED SLICE SIDE OF CONCRETE SPECIMEN NO. 11T-2B.

CTL

FIG. 13 OBLIQUE VIEW OF CONCRETE SLICE NO. 21T-2A, AS RECEIVED FOR TESTING.

FIG. 14 LAPPED SLICE SIDE OF CONCRETE SPECIMEN NO. 21T-2A.

🖌 1 I

PETROGRAPHIC EXAMINATION OF HARDENED CONCRETE, ASTM C 856

CTL PROJECT NO.: 102323	DATE: August 20, 1992
CLIENT: Martin Marietta Energy Systems, Inc.	PROBLEM: Quality Evaluation
STRUCTURE: Concrete Slice from 6 x 6 x 30-in. Specimen, PCA Series 374	EXAMINED BY: A. G. Nisperos
LOCATION: PCA, Skokie, Illinois	
	Page 1 of 7

SAMPLE:

Identification: Series 374, No. 19B-1A.

Dimensions: 6" x 6" x 1".

Top Surface: Irregular, broom-finish.

Bottom Surface: Smooth, formed-surface.

Cracks, Joints, Large Voids: No significant cracks observed. Some irregular voids up to 0.2 in. in diameter scattered over concrete specimen.

Reinforcement: None observed.

AGGREGATES (A)

Coarse (C): Gravel composed mainly of siliceous rocks (quartzites, arkose, chert, etc.) and calcareous rocks (dolomite, limestone), and other rock fragments.

Fine (F): Natural sand consisting mainly of quartz, feldspar, chert, shale and variety of rock fragments.

Gradation & Top Size: 1-inch to 3/4-inch sizes to maximum size of 1-1/2 inches. Evenly-graded.

Shape & Distribution: CA is subrounded to rounded, tabular to subspherical, some elongated; FA is subangular to subrounded and spherical; uniform distribution.

<u>PASTE</u>

Color: Medium-light gray.

Hardness: Moderately hard.

Luster: Subvitreous.

Calcium Hydroxide*: 5 - 10%.

Unhydrated Portland Cement Clinker Particles (UPC's)*: 5 - 8%.

Depth of Carbonation: 0.1 in. depth from top surface.

Air Content: Less than 1% mostly entrapped air voids.

Fly Ash*: None observed.

Paste-Aggregate Bond: Moderately strong (hammer-induced). Freshly broken surfaces pass through aggregate particles.

Secondary Deposits: Some calcium hydroxide along aggregate fringes.

Microcracking: None observed.

ESTIMATED WATER-CEMENT RATIO: Moderate (0.45 to 0.55).

MISCELLANEOUS: Carbonate rock dust observed in the paste but not causing any detrimental effect. No evidence of alkali aggregate reaction is observed.

*percent by volume of paste

4.1

PETROGRAPHIC EXAMINATION OF HARDENED CONCRETE, ASTM C 856

CTL PROJECT NO.: 102323 CLIENT: Martin Marietta Energy Systems, Inc. STRUCTURE: Concrete Slice from 6 x 6 x 30-in. Specimen, PCA Series 374 LOCATION: PCA, Skokie, Illinois DATE: August 20, 1992 PROBLEM: Quality Evaluation EXAMINED BY: A. G. Nisperos

Page 2 of 7

SAMPLE:

Identification: Series 374, No. 21-1A.

Dimensions: 6" x 6" x 1".

Top Surface: Irregular, broom-finish.

Bottom Surface: Smooth, formed-surface.

Cracks, Joints, Large Volds: No significant cracks observed. Some irregular voids up to 0.2 in. in diameter scattered over concrete specimen.

Reinforcement: None observed.

AGGREGATES (A)

Coarse (C): Gravel composed mainly of siliceous rocks (quartzites, arkose, chert, etc.) and calcareous rocks (dolomite, limestone), and other rock fragments.

Fine (F): Natural sand consisting mainly of quartz, feldspar, chert, shale and variety of rock fragments.

Gradation & Top Size: 1-inch to 3/4-inch sizes to maximum size of 1-1/2 inches. Evenly-graded.

Shape & Distribution: CA is subrounded to rounded, tabular to subspherical, some elongated; FA is subangular to subrounded and spherical; uniform distribution.

PASTE

Color: Medium-light gray.

Hardness: Moderately hard.

Luster: Subvitreous.

Calcium Hydroxide*: 5 - 10%.

Unhydrated Portland Cement Clinker Particles (UPC's)*: 5 - 8%.

Depth of Carbonation: 0.1 in. depth from top surface.

Air Content: Less than 1% mostly entrapped air voids.

Fly Ash*: None observed.

Paste-Aggregate Bond: Moderately strong (hammer-induced). Freshly broken surfaces pass through aggregate particles.

Secondary Deposits: Some calcium hydroxide along aggregate fringes.

Microcracking: None observed.

ESTIMATED WATER-CEMENT RATIO: Moderate (0.45 to 0.55).

MISCELLANEOUS: Carbonate rock dust observed in the paste but not causing any detrimental effect. No evidence of alkali aggregate reaction is observed.

^{*}percent by volume of paste

PETROGRAPHIC EXAMINATION OF HARDENED CONCRETE, ASTM C 856

CTL PROJECT NO.: 102323DATE: August 20, 1992CLIENT: Martin Marietta Energy Systems, Inc.PROBLEM: Quality EvaluationSTRUCTURE: Concrete Slice from 6 x 6 x 30-in. Specimen, PCA Series 374EXAMINED BY: A. G. NisperosLOCATION: PCA, Skokie, IllinoisPage 3 of 7

SAMPLE:

A. 41 ...

Identification: Series 374, No. 31-1A.

Dimensions: 6" x 6" x 1".

Top Surface: Irregular, broom-finish.

Bottom Surface: Smooth, formed-surface.

Cracks, Joints, Large Voids: No significant cracks observed. Some irregular voids up to 0.2 in. in diameter scattered over concrete specimen.

Reinforcement: None observed.

AGGREGATES (A)

Coarse (C): Gravel composed mainly of siliceous rocks (quartzites, arkose, chert, etc.) and calcareous rocks (dolomite, limestone), and other rock fragments.

Fine (F): Natural sand consisting mainly of quartz, feldspar, chert, shale and variety of rock fragments.

Gradation & Top Size: 1-inch to 3/4-inch sizes to maximum size of 1-1/2 inches. Evenly-graded.

Shape & Distribution: CA is subrounded to rounded, tabular to subspherical, some elongated; FA is subangular to subrounded and spherical; uniform distribution.

PASTE

Color: Light gray.

Hardness: Moderately hard.

Luster: Subvitreous.

Calcium Hydroxide*: 10 - 15%.

Unhydrated Portland Cement Clinker Particles (UPC's)*: 3 - 6%.

Depth of Carbonation: 0.1 in. depth from top surface.

Air Content: Less than 1% mostly entrapped air voids.

Fly Ash*: None observed.

Paste-Aggregate Bond: Moderately strong (hammer-induced). Freshly broken surfaces pass through aggregate particles.

Secondary Deposits: Some calcium hydroxide along aggregate fringes.

Microcracking: None observed.

ESTIMATED WATER-CEMENT RATIO: Moderate to moderately high (0.50 to 0.60).

MISCELLANEOUS: Carbonate rock dust observed in the paste but not causing any detrimental effect. No evidence of alkali aggregate reaction is observed.

*percent by volume of paste

A 1 4

PETROGRAPHIC EXAMINATION OF HARDENED CONCRETE, ASTM C 856

CTL PROJECT NO.: 102323 CLIENT: Martin Marietta Energy Systems, Inc. STRUCTURE: Concrete Slice from 6 x 6 x 30-in. Specimen, PCA Series 374 LOCATION: PCA, Skokie, Illinois DATE: August 20, 1992 PROBLEM: Quality Evaluation EXAMINED BY: A. G. Nisperos

Page 4 of 7

SAMPLE:

Identification: Series 374, No. 43A-3C.

Dimensions: 6" x 6" x 1".

Top Surface: Irregular, broom-finish.

Bottom Surface: Smooth, formed-surface.

Cracks, Joints, Large Voids: No significant cracks observed. Some irregular voids up to 0.2 in. in diameter scattered over concrete specimen.

Reinforcement: None observed.

AGGREGATES (A)

Coarse (C): Gravel composed mainly of siliceous rocks (quartzites, arkose, chert, etc.) and calcareous rocks (dolomite, limestone), and other rock fragments.

Fine (F): Natural sand consisting mainly of quartz, feldspar, chert, shale and variety of rock fragments.

Gradation & Top Size: 1-inch to 3/4-inch sizes to maximum size of 1-1/2 inches. Evenly-graded.

Shape & Distribution: CA is subrounded to rounded, tabular to subspherical, some elongated; FA is subangular to subrounded and spherical; uniform distribution.

PASTE

Color: Light gray.

Hardness: Moderately hard to moderately soft.

Luster: Subvitreous.

Calcium Hydroxide*: 15 - 20%.

Unhydrated Portland Cement Clinker Particles (UPC's)*: 3 - 5%.

Depth of Carbonation: 0.1 in. depth from top surface.

Air Content: 2 - 3% mostly entrapped air voids less than 2%, nonuniformly distributed.

Fly Ash*: None observed.

Paste-Aggregate Bond: Moderately strong to moderately weak (hammer induced). Freshly broken surfaces pass through and around aggregate particles.

Secondary Deposits: Some calcium hydroxide and ettringite partly line air voids.

Microcracking: None observed.

ESTIMATED WATER-CEMENT RATIO: Moderately high (0.55 to 0.65).

MISCELLANEOUS: Carbonate rock dust observed in the paste but not causing any detrimental effect. No evidence of alkali aggregate reaction is observed.

^{*}percent by volume of paste

PETROGRAPHIC EXAMINATION OF HARDENED CONCRETE, ASTM C 856

CTL PROJECT NO.: 102323DATE: August 20, 1992CLIENT: Martin Marietta Energy Systems, Inc.PROBLEM: Quality EvaluationSTRUCTURE: Concrete Slice from 6 x 6 x 30-in. Specimen, PCA Series 374EXAMINED BY: A. G. NisperosLOCATION: PCA, Skokie, IllinoisDate: August 20, 1992

Page 5 of 7

SAMPLE:

47 0

Identification: Series 374, No. 51-2B.

Dimensions: 6" x 6" x 1".

Top Surface: Irregular, broom-finish.

Bottom Surface: Smooth, formed-surface.

Cracks, Joints, Large Volds: No significant cracks observed. Some irregular voids up to 0.2 in. in diameter scattered over concrete specimen.

Reinforcement: None observed.

AGGREGATES (A)

Coarse (C): Gravel composed mainly of siliceous rocks (quartzites, arkose, chert, etc.) and calcareous rocks (dolomite, limestone), and other rock fragments.

Fine (F): Natural sand consisting mainly of quartz, feldspar, chert, shale and variety of rock fragments.

Gradation & Top Size: 1-inch to 3/4-inch sizes to maximum size of 1-1/2 inches. Evenly-graded.

Shape & Distribution: CA is subrounded to rounded, tabular to subspherical, some elongated; FA is subangular to subrounded and spherical; uniform distribution.

PASTE

Color: Medium-light gray.

Hardness: Moderately hard.

Luster: Subvitreous.

Calcium Hydroxide*: 5 - 10%.

Unhydrated Portland Cement Clinker Particles (UPC's)*: 5 - 8%.

Depth of Carbonation: 0.1 in. depth from top surface.

Air Content: Less than 1% mostly entrapped air voids.

Fly Ash*: None observed.

Paste-Aggregate Bond: Moderately strong (hammer induced). Freshly broken surfaces pass through aggregate particles.

Secondary Deposits: Some calcium hydroxide along aggregate fringes.

Microcracking: None observed.

ESTIMATED WATER-CEMENT RATIO: Moderate (0.45 to 0.55).

MISCELLANEOUS: Carbonate rock dust observed in the paste but not causing any detrimental effect. No evidence of alkali aggregate reaction is observed.

*percent by volume of paste

PETROGRAPHIC EXAMINATION OF HARDENED CONCRETE, ASTM C 856

CTL PROJECT NO.: 102323 CLIENT: Martin Marietta Energy Systems, Inc. STRUCTURE: Concrete Slice from 6 x 6 x 30-in. Specimen, PCA Series 374 LOCATION: PCA, Skokie, Illinois

DATE: August 20, 1992 PROBLEM: Quality Evaluation EXAMINED BY: A. G. Nisperos

Page 6 of 7

SAMPLE:

1 🖡 🗳

Identification: Series 374, No. 11T-2B.

Dimensions: 6" x 6" x 1".

Top Surface: Irregular, broom-finish.

Bottom Surface: Smooth, formed-surface.

Cracks, Joints, Large Voids: No significant cracks observed. Some irregular voids up to 0.2 in. in diameter scattered over concrete specimen.

Reinforcement: None observed.

AGGREGATES (A)

Coarse (C): Gravel composed mainly of siliceous rocks (quartzites, arkose, chert, etc.) and calcareous rocks (dolomite, limestone), and other rock fragments.

Fine (F): Natural sand consisting mainly of quartz, feldspar, chert, shale and variety of rock fragments.

Gradation & Top Size: 1-inch to 3/4-inch sizes to maximum size of 1-1/2 inches. Evenly-graded.

Shape & Distribution: CA is subrounded to rounded, tabular to subspherical, some elongated; FA is subangular to subrounded and spherical; uniform distribution.

PASTE

Color: Light gray.

Hardness: Moderately hard to moderately soft.

Luster: Subvitreous.

Calcium Hydroxide*: 15 - 20%.

Unhydrated Portland Cement Clinker Particles (UPC's)*: 3 - 5%.

Depth of Carbonation: 0.1 in. depth from top surface.

Air Content: 6 - 8% with lots of microscopic air voids that appear in clusters around aggregate fringes; nonuniformly distributed.

Fly Ash*: None observed.

Paste-Aggregate Bond: Moderately strong to moderately weak (hammer induced). Freshly broken surfaces pass through and around aggregate particles.

Secondary Deposits: Some calcium hydroxide and ettringite partly line air voids.

Microcracking: None observed.

ESTIMATED WATER-CEMENT RATIO: Moderate to moderately high (0.45 to 0.55).

MISCELLANEOUS: Carbonate rock dust observed in the paste but not causing any detrimental effect. No evidence of alkali aggregate reaction is observed.

*percent by volume of paste